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1. Introduction

Igor is a knowledge-based system designed for exploratory statistical analysis of complex
systems and environments. Igor has two related goals: to help automate the search for
interesting patterns in data sets, and to help develop models that capture significant
relationships in the data. Igor supports and complements the efforts of a human analyst in
examining large or complex data sets [11 ].

Igor explores a data set with the statistical operations of exploratory data analysis (EDA).
Examples of EDA operations are univariate power transforms, bivariate relationship
partitioning to distinguish separate effects, and analysis of patterns in residuals. Through
these operations Igor incrementally constructs partial descriptions or models of data. When
interesting patterns are observed in a model or its residuals in the data, Igor
opportunistically selects appropriate operations to explore the new phenomena. As the
analysis proceeds, a more complete picture of the data set gradually emerges.

We must consider many different tradeoffs in designing a systern for statistical reasoning:
operator generality versus power, language expressiveness versus efficiency, opportunism
versus control. Of these the key tradeoff is between opportunism and control. EDA
operations are powerful: they can be applied in many situations in different combinations,

producing results whose proper interpretation depends on context. Effective analysis
depends on taking advantage of new results to guide search in appropriate directions [7].

In terms of representation, we must decide how primitive statistical operators should be
combined into higher level ones, and how these operators should interact with each other.

If EDA operations are implemented as procedures that call other statistical procedures, as in
a programming language, we have strict control over the results we produce, but little
flexibility in responding to unexpected findings and applying appropriate context-specific
techniques. If EDA operations are implemented as rules that fire whenever "interesting"
intermediate results appear, on the other hand, we have the necessary opportunism, but
find it difficult to capture strategic aspects of analysis.

We can approach this problem with the techniques of opportunistic planning. We have
developed in Igor a planning language that balances control and opportunism. By explicit
representation of the goals of exploratory analysis, we can take advantage of strategic
knowledge about data analysis to structure and reduce search. Monitoring structures
opportunistically detect intermediate and end results with interesting characteristics. The
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plan and goal representation lets Igor select appropriate context-dependent sequences of

operations during the analysis.

Igor is intended for robust assistance in domains with an enormous search space of
hypotheses. Conventional packages offer statistical tests and an environment in which the
user may either program scripts or run through an analysis by hand. Igor allows more
flexible interaction. An analyst may apply a variety of heterogeneous strategies to produce
and confirm results. Some processes may be scripted to proceed without interaction, while

others may be defined to incorporate human guidance.

Our work has dealt mainly with analyzing the behavior of artificial intelligence programs.
Because an AI system may react in complex ways to the influences of its environment, the
reasons for its behavior may not be obvious from execution traces. This is a challenging
domain for Igor. We have also looked into automating the analysis of Landsat wildlife
habitat data, but we have gone no farther than designing a few basic procedures for data

preparation [8].

In the next section we discuss elementary strategies for exploring data. In Section 3 we

outline the planning representation, the relevance of planning to statistical analysis and how

the representation supports the process. Section 4 describes an example of Igor in practice.
Section 5 concludes with a discussion of the benefits of the general approach and plans for

future work.

2. Strategies for Exploring Data

Exploratory studies are the informal prelude to experiments, in which questions and
procedures are refined. Exploration is like working in a test kitchen: before one writes
down the final version of a recipe, one first tries out possible alternative procedures and
evaluates the results. Exploratory results influence confirmatory studies in a cycle of

successively more refined exploration and confirmation [2, 5, 6, 12].
z

We apply two general strategies in exploring data: one generates simplifying descriptions of
data, the other extends and refines surface descriptions of data. We simplify data by

constructing partial descriptions and models that capture particular characteristics of the
data. The descriptions range from simple summary statistics, such as means and medians,
to complex domain models. We make descriptions more effective by looking beyond
surface descriptions at what is left unexplained. For example, a regression line may be a

good description of the general trend in a relationship, but an analysis of residuals can give
an entirely different picture at a lower level of detail. Exploratory strategies generate

increasingly detailed, complementary descriptions of data.

EDA strategies often takes advantage of intermediate results that suggest further areas of

exploration. We can best illustrate the process with a brief example, adapted from Tukey
[12]. Consider Figure 1, which plots the population of the U.S. between 1800 and 1950.
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Figure 1: Population vs Date Figure 2: Log Population vs Date

We first notice that population in earlier decades increases at a slower rate than in later
years. We can fit a small-degree polynomial such as a quadratic to the data, or,
equivalently, transform each point by taking its square root. This kind of transformation
serves to straighten the data points so that further structure may be observed. What we
find, however, is that the points are not collinear after the transformation. A pattern in the
residuals tells us that there is further structure to be elucidated. We thus return to the

original data scale to try a different approach.

While the earlier data points seem to curve upward, the later points, from about 1900, seem
to have constant slope. We thus partition the relationship at this point, and analyze each
partition separately. It turns out that higher order curves fit the later partition little better
than a straight line. From the residuals of this fit we may be able to extract further
information--for exampIe, that population took a dip in the decade of 1940. The linear fit
and residuals, which we interpret as descriptions of trend and local detail, together form a
satisfactory model of the later partition. For the earlier partition we first apply a log
transform to straighten the data points, as in Figure 2, and then proceed as with the later
partition.

Taken together, we now have a reasonably detailed model of population during these years.
It shows that population increased exponentially between 1800 and 1900, but then slowed
to a linear rate. Local effects can be seen in the residuals of the trend descriptions. Our
construction of this composite model was guided by observation of an inflection point in
the data, and the realization that the first, simpler model was not sufficient to capture
significant characteristics of the data.

Given a basic set of statistical tools, humans can easily follow similar reasoning. The task
is considerably more difficult for a computer. Our description has neglected much of the
complexity of the decisions involved. Many intermediate results arise, but only a few of
them turn out to be interesting. In general there are always choices to be made about which
techniques best suit the situation and which results are most interesting to pursue.

When we explore data effectively we exploit a tension between opportunism and control.

Opportunism lets us explore new in!eresting results that arise unpredictably. Control
determines which results are promising, how they might best be evaluated, and when
particular paths of reasoning might be abandoned. Without a proper balance between
opportunism and control, an automated system may be unable to make the simplest
discoveries, or may face an explosive search space.
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3. A Planning Language for Data Exploration

In the foregoing example we incrementally built a structured interpretation, using weak
heuristics, from raw data. We can view the process as a form of planning. In planning,
sequences of simple operations are combined for complex effect. Planning may be
incremental and opportunistic, based on constructing and revising plans according to
information acquired during the process. The analogy between planning and data

exploration extends further:

• Exploratory strategies are plans consisting of sequences of statistical operations; these
operations are actions that transform data relationships.

• As in planning, primitive exploratory operations can be combined in different ways for
different effects. For example, in considering a relationship between two variables, it
makes a great difference whether we remove outliers before or after applying a
transformation to the relationship.

• Conversely, abstract statistical operations often decompose naturally into more

primitive operations, just as in hierarchical plan decomposition. For example, the
abstract action of fitting a robust line to a relationship may expand to partitioning the
relationship, removing outliers, calculating medians, and combining the results.

• Selection of the most effective strategy is akin to selection of an appropriate plan to

satisfy a given goal. We must often evaluate different paths to find the most effective
one.

• Just as plans fail, the results of an exploratory operation may not be useful, requiring
repeated application perhaps with different parameters. Retrying an operation is
analogous to retrying an action as a part of plan failure recovery. Selecting a different,
more promising strategy corresponds to replanning.

Using this analogy we have developed a planning language for Igor, based on the RESUN
signal interpretation system [1]. RESUN is a blackboard-based control planner which
supports goal satisfaction through flexible combination of scripts and actions.
Opportunism is managed by mechanisms that monitor the state of plans and by heuristics
that determine when and how particular goals are satisfied.

At the lowest level, the data structures manipulated in the planning representation are

frames. A variable is a simple frame; a linear relationship between two variables is a

slightly more complex hierarchy of frames; an annotated causal model is a highly
interconnected hierarchy of frames. Igor allows specialization of two built-in data types -

basic sequence and basic relationship. We call frames and hierarchies of all types

structures.

The primitive operations provided by the representation are called actions. An action is a
data transformation or decomposition of an input structure to an output structure. A log

transform is a simple example of an action; it applies a log function to each element in a
sequence and collects the results. More complex transformations include smoothing,
outlier removal, and fit operations. Each action has an associated goal form and may be

triggered by the establishment of a matching goal. The definition of the log transform
action is shown in Figure 3.
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(define-action (log-transform-action
:goal (log-transform-goal
:input (variable)
:output (result))

:action (log-variable variable))

?variable ?result)

Figure 3: Action form for log transform

Actions are combined in scripts. A script is a sequence of subgoals whose associated

actions transform one structure into a more concise, better parametrized, more descriptive
structure. Scripts, like actions, have associated goal forms, and thus may be combined
hierarchically to satisfy the goals of other scripts. Combination of subgoals in a script is

governed by the specification of the script. A script specification defines how its subgoals
must be satisfied in order for the top level goal to be satisfied. Specification constructs
allow sequential combination of subgoals, iteration over sets of subgoals,
conditionalization on tests of variable values, and activation of subgoals in parallel. The
example script in Figure 4 combines a conditional test of a variable with a sequence of
subgoals. This script finds discontinuities in a variable by examining the differences
between contiguous elements of the sorted variable values, in a simple form of cluster
analysis. Relatively large steps indicate breaks between groups of values. Each subgoal in
the specification transforms an intermediate result, producing in the end a variable in which
elements are mapped to the clusters in which they fall.

(define-script
:goal (explore variable ?variable ?context)
:input (variable context)
:output (transformed-variable)
:spec (:COND (variable)

(continuous-valued-variable-p
(:SEQ

find-variable-discontinuities-script

variable)

sort-goal
difference-goal
outlier-positions-goal
outlier-position-values-goal
transform-by-discontinuities-goal)))

Figure 4: Script form for variable discontinuities

Scripts and actions control procedural execution in the representation, managed flexibly by
goal establishment. These constructs still do not provide the degree of opportunism and
context-specific control we associate with exploration, however. For this we rely on an

explicit representation of context, and two mechanisms that depend on context, monitoring
and focusing.

Execution of an action causes a new structure to be generated. When actions execute
sequentially as part of a script, these new structures may be stored as intermediate results of

the script. A context structure is simply the sequence of intermediate and end results

produced by execution of a script. We associate a context with a script and the goal which
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the script satisfies. Because script subgoals may be satisfied by other scripts, hierarchical
structures of contexts may be built up during exploration. These structures provide
contextual information to monitoring and focusing mechanisms.

A strictly goal-driven system can find it difficult to take new structures under consideration

during the search process. A monitor is a special script that is activated automatically when
an object is created as an intermediate or end result of the execution of a script. A monitor

establishes exploration goals for the new result and makes non-local updates to the context
hierarchy. Monitors evaluate the 'interestingness' of results, taking context information
into account, to see which kinds of exploration, and hence goals, are relevant. Domain-

specific as well as general heuristic knowledge can influence the selection of appropriate

goals by a monitor.

Focusing heuristics guide the exploration process based on local context information.
Focusing heuristics are activated whenever there is a choice between which goals to pursue
and which scripts to apply; they evaluate the precedence of active goals and the relevance of
matching scripts when deciding which scripts should be activated and which ignored. We
use focusing heuristics to evaluate the cost of pursuing particular search paths. A focusing
heuristic is free to prune the goals or scripts it takes as input, temporarily or permanently.
As with monitors, a focusing heuristic may take advantage of domain-specific knowledge

in its processing.

4. An Igor Example

In this section we examine Igor's analysis of the results of an experiment with Phoenix, a
simulated environment populated by autonomous agents.

Phoenix simulates forest fires in Yellowstone National Park and the agents that fight the

fires. Agents include watchtowers, fuel trucks, helicopters, bulldozers, and, coordinating
tile efforts of all, a fireboss. Fires burn in unpredictable ways due to wind speed and
direction, terrain and elevation, ground cover type and natural boundaries such as rivers,

roads, and lakes. Agents behave unpredictably-as well, because they instantiate plans as
they proceed, reacting to immediate, local situation changes. Phoenix is a complex
simulation; even when the agents are successful in containing a fire we may find it difficult

to explain why particular behavior is effective. We thus run experiments in which we
control and test specific aspects of Phoenix.

In one experiment we examined the relationship between the thinking speed of the fireboss
and the rate of environmental change. Thinking speed is controlled by the Real-Time

Knob, or RTK, which sets the ratio of CPU time in the fireboss to simulation time in the
environment. Thus, for example, during the development of Phoenix the value of RTK
was fixed at 1.0, which corresponds to five minutes of simulation time elapsed per one

second of CPU time. By setting the value of RTK higher or lower we change how quickly
the fireboss can react to external events and build plans to deal with them. Environmental

change in this experiment is influent:ed by wind speed. When wind speed is low, fire

spread is slow and predictable. At higher wind speeds fire spreads more quickly and takes
less predictable paths over the ground cover_

We created a fire fighting scenario to be fought by the fireboss and four bulldozers. We
ran 385 trials using the same basic scenario but setting wind speed and RTK to different
values at the beginning of each trial. During each trial we collected some forty
measurements, including Wind Speed, RTK, Success, and Area Burned. Our example
will cover these variables (Table 1.)
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Variable

Wind Speed
Real-Time Knob

Table

Abbr

WS

RTK

1" Phoenix parameters
Values

3, 6, 9 km/hr

0.333, 0.454, 0.555, 0.714, 1.000'i""'1.666

Success Success 0, 1
Area Burned Area continuous values

First we describe the steps Igor takes in analyzing this data set, and then we summarize
with a broader picture of the exploration process. Our discussion will focus on exploration
of the relationship between RTK and Success, or RTK-S.

Igor begins its analysis with a single goal, explore-data. The top level script that matches

this goal, explore-data-script, expands into parallel subgoals, explore-variables and

explore-relationships. These subgoals are satisfied by scripts which expand into goals
for the exploration of each variable individually and relationships between them.

Exploration of single variables involves scripts for straightening variables through power
transforms, detecting discontinuities and regions of constancy in variable values, finding
possible clusters, and calculating standard summary statistics. Exploration of relationships
includes 'untilting' skewed relationships with power transforms, mapping categorical
variable relationships into contingency tables, and applying linear fit functions and testing
residuals. On detecting a particular characteristic in a structure, a script most often
produces a transformation of the structure into a form in which the characteristic is easily
seen and manipulated. These scripts are not applied in linear fashion, but are rather
selected by goal matching, pruned and ordered by focusing heuristics, and re-applied by
monitors.

An interesting avenue is taken in exploring how the probability of success depends on

thinking speed. The process interests us because it deals with a high level description of
the relationship between two primary variables in the experiment, RTK and Success. One

of the scripts activated by the explore-relationship goal is the discrete-vs-rnean-

transformation. When this script determines that RTK has discrete values, it proceeds by
partitioning Success by the values of RTK, reducing RTK to its six distinct values, and
mapping the statistic mean over each of the Success partitions. (Because Success has

binary values, 0 for failure and 1 for success, the mean of a Success partition is equivalent
to the proportion of successes in that partition.) The resulting sequences, containing the
reduced values of RTK and the mean values of Success per partition, are associated in a

new relationship, RTK-pS. We can interpret this relationship as the probability of
succeeding given a particular value of RTK. Graphically the relationship RTK-pS looks
like the plot in Figure 5.
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The result of the discrete-vs-mean-transformation is a transformed relationship. A

monitor at the explore-relationships level detects the creation of the RTK-pS relationship
and adds it to the context structure for the explore-relationships goal. It can then be

explored in turn.

One of the exploration goals generated for RTK-pS is the sequence-fit goal, which is

matched by the linear-fit script. The linear-fit script fits a line to the relationship,
generating both a simple regression equation and a sequence of residuals. The residuals
sequence is detected by a monitor and examined for patterns. The simplest pattern-
detecting script finds that the residuals of RTK-pS are bitonic, increasing then decreasing.
A monitor makes this available in the context of the exploration goal of RTK-pS.

Now the activation of scripts to match the sequence-fit goal is controlled by a focusing

heuristic. If the linear-fit script produces a good enough fit (ile., With enough variance
accounted for,) and there is no structure in the residuals, then the goal is satisfied. Here,
however, because of the residuals, the focusing heuristic must continue the search. There
are two further possibilities available to the focusing heuristic. The first is to produce a

transform for RTK-pS and retry the linear-fit script. The second is to partition the
relationship at or near the inflection point in the residuals, and generate a fit for each

partition separately during exploration:

Both of these approaches are plausible, Because we know that the mean of Success can
never rise above 1.0, we could fit a sublinear function to the relationship, with asymptote at

1.0, as shown in Figure 6. This gives a better fit than a straight line, but still not a perfect
one. Alternatively we recall that the initial setting of RTK is 1.0, the setting at which the

system was designed and tested. We observe that the discontinuity in RTK-pS occurs near
this value. Thus we may be seeing not a continuous relationship between the variables but

two separate modes of operation, one at low thinking speed and the other at high thinking
speed. Within each mode the RTK-pS relationship is linear. This interpretation Is given in

Figure 7.

Neither of these competing interpretations clearly rules out the other. If we believe that the

design of Phoenix provides smooth degradation in performance as thinking speed
decreases, we might prefer the first interpretation. The second interpretation is also

plausible, except that degradation is not smooth after some threshold value of RTK is
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reached. The additional evidence that this threshold occurs near the RTK setting of 1.0,
possibly indicating that Phoenix plans rely implicitly on this setting, inclines us to credit the
second interpretation.
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Figure 6: Straightened RTK-pS Figure 7: Partitioned model of RTK-pS

The focusing heuristic can clearly take advantage of such domain-dependent knowledge.
In this case, however, we have taken a simpler approach. Applying a transformation to

RTK-pS is relatively inexpensive, in terms of increase in the size of the search space.
Partitioning the relationship, on the other hand, is a great deal more expensive. In general
when partitioning Igor must consider the partitions separately, and in some cases

recombine the individual results. Thus the focusing heuristic runs the sequence-fit scripts
in sequence, rather than in parallel, and will not proceed to the later ones if the initial
inexpensive ones succeed.

Finally we present an overview of Igor's processing. Figure 8 traces significant points in
plan and goal instantiation during the exploration process.
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1. Exploration goals are established for variables and relationships.
2. Relationship RTK-S is explored, triggering the discrete-vs-mean-transformation.
3. RelationshipRTK-pS is generated.
4. A monitor detects RTK-pS and establishes an exploration goal for the relationship.

5. A sequence-fit goal is established for RTK-pS.
6. A focusing heuristic determines that a linear fit is appropriate.
7. Residual patterns Cause a nonlinear fit to be tried.
8. Inadequate nonlinear fit causes a partitioning of the relationship.
9. Further exploration on the partitions occurs.

5. Conclusions

We have examined some of the issues involved in automating exploratory data analysis, in

particular the tradeoff between control and opportunism. We have proposed an
opportunistic planning solution for this tradeoff, and have implemented a prototype, Igor,
to test the approach. Our experience in developing Igor has been surprisingly smooth. In
contrast to earlier versions that relied on rule representation, it has been straightforward to

increment Igor's knowledge base without causing the search space to explode. The
planning representation appears to be both general and powerful, with high level strategic
knowledge provided by goals and plans, and hooks for domain-specific knowledge

provided by monitors and focusing heuristics.

Our future plans include incorporating detailed domain-specific knowledge into Igor, which
will let us explore the interaction between general strategic knowledge and domain-specific
control knowledge [8, 9, 10]. A domain we find especially interesting is experimental
results describing the behavior of AI systems such as planners and schedulers.
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We also wish to examine the relationship between exploratory data analysis and automated
causal modeling. Some of the results produced by EDA appear to be useful cues to
humans in developing causal models. We may be able to exploit such results in an
automated system as well. Further, a causal model may be able to give search guidance to
Igor, for example in distinguishing between proximal and distal causes of an observed
effect [3, 4].

Our final concern is with evaluation. How sensitive is Igor to its parameter settings? How
much information does Igor require to draw conclusions about a particular effect? Are the
chains of statistical reasoning Igor produces coherent to humans? We will explore these
and other questions in future work.
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